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Abstract

In this work, we present the formulation and numerical implementation of a simple elastoplastic
constitutive equation for geometrically exact rod models with consideration of cross-sectional warp-
ing. Given the kinematical hypothesis of non-deformability of the cross-section in the projection
of its plane, we work with compact cross-sections and assume that the plastic deformations occur
due only to the cross-sectional normal stresses, thereby allowing us to work under a simple uni-
axial framework. Our approach adopts a standard additive decomposition of the strains together
with a linear elastic relation for the elastic part of the deformations. Both ideal plasticity and plas-
ticity with (nonlinear) isotropic hardening are considered. The resulting equation is implemented
within a finite element rod model and is validated by means of several numerical examples. The rod
model considers warping effects and has 7 degrees of freedom. We believe that a simple elastoplas-
tic model embedded within a robust rod finite element is a useful tool for the analysis of thin-walled
rod structures, such as, e.g., steel structures.

Keywords: Plasticity; Elastoplastic constitutive equation; Rod model; Finite elements; Steel struc-
tures

ANALISE NAO-LINEAR ELAS]'OPLASTICA DE ESTRUTURAS DE ACO COM
PERFIS DE SECAO TRANSVERSAL COMPACTA*

Resumo

Neste trabalho, apresentamos a formulacdo e implementacdo computacional de uma equacao con-
stitutiva elastoplastica simples para modelos de barra geometricamente exatos com consideracdo
do empenamento. Dada a hipétese cinematica de ndo deformabilidade da secdo transversal da
barra na projecao de seu plano, trabalhamos com secbes transversais compactas e assumimos que
as deformacodes plasticas ocorrem devido apenas as tensdes normais a secdo transversal, permitindo-
nos trabalhar com um modelo constitutivo uniaxial simples. Nossa abordagem adota uma decom-
posicao aditiva das deformacdes, com uma relacdo linear para a parte elastica. Tanto plasticidade
ideal quanto plasticidade com encruamento isétropo (ndo-linear) sdo considerados. A equacéo re-
sultante é implementada em um modelo de elementos finitos de barras e é validada em diversos
exemplos numéricos. O modelo de barra considera efeitos de empenamento da secio transversal
e possui 7 graus de liberdade. O resultado € um modelo elastoplastico simples combinado com um
elemento finito de barra robusto que se mostra Util para a andlise de estruturas reticuladas con-
stituidas por barras de secdo transversal de paredes delgadas, mas que ndo estao suscetiveis a in-
stabilidades localizadas, como, por exemplo, estruturas constituidas de perfis de aco laminados e
soldados de secdo compacta.

Palavras-chave: Plasticidade; Equacao constitutiva elastoplastica; Modelo de barra; Elementos fini-
tos; Estruturas de aco
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1. INTRODUCTION

One of the motivations for the development of scientific research in engineering is the optimiza-
tion of structural elements with respect to the relation between quantity of material and capacity
to performits function. This greater efficiency is acquired through application of ever more acurate
analyses of physical behavior of the structural element in the designed structure. This minimizes
the excess of material used to attain the necessary performance and safety. For steel structural el-
ements, one of the biggest barriers to the advance in this area is the complexity of methods of anal-
ysis with consideration of geometrical nonlinearity (GNL) and the description of the boundaries of
elastic and plastic deformation regimens of the material, i.e. consideration of material nonlinear-
ity (MNL). Given the characteristics of structural steel material and the slender geometry of these
elements, effects of GNL and MNL are relevant for many design criteria, most notably in statically
indeterminate plane and spatial frames.

The design of structural elements to work in plastic regimen considers resistances greater than
those in elastic regimen and allow a gain of efficiency maintaining the necessary safety in design
with adequate loading and geometric conditions. This consideration involves the analysis of the
structure with partial plastification of the cross-sections as well as, in statically indeterminate struc-
tures, the formation of full plastic hinges.

The classical methods of structural analysis with consideration of plasticity and GNL are labori-
ous and have been giving way to analyses with mathematical models that allow a better use of the
processing capacity of current computers. The development and implementation of constitutive
models with consistent kinematical formulations is, because of that, a subject that has attracted re-
searchers over many recent years.

In this work, we present the formulation and implementation of a simple elastoplastic constitutive
equation for geometrically exact thin-walled rod models. We assume that the plastic deformations
may occur due only to the cross-sectional normal stresses, thereby allowing us to work under a sim-
ple uniaxial framework. Our approach adopts a standard additive decomposition of the strains to-
gether with a linear elastic relation for the elastic part of the deformation. Both ideal plasticity and
plasticity with (linear) isotropic hardening are considered. The model is implemented within a finite
element thin-walled rod model and is validated by means of numerical examples. We believe that
simple elastoplastic models combined with robust thin-walled rod finite elements may be a useful
tool for the analysis of thin-walled rod structures, such as, e.g., steel structures.

Throughout this text, italic Greek or Latin lowercase letters (a, b, ..., o, 3, ...) denote scalar quan-
tities, bold italic Greek or Latin lowercase letters (a, b, ..., a, 3, ...) denote vectors and bold italic
Greek or Latin capital letters (A, B, ...) denote second-order tensors in a three-dimensional Eu-
clidean space. Summation convention over repeated indices is adopted, with Greek indices ranging
from 1to 2 and Latin indices from 1 to 3.

2. GEOMETRICALLY EXACT ROD KINEMATICS

The kinematical rod model that is the basis of this work had its first developments in the works of
Pimenta and Yojo (1993), with a first implementation in Campello (2000). It is a geometrically exact
formulation in which shear deformation due to bending and cross-section warping due to combined
bending and non-uniform torsion are explicitly taken into account. A straight reference configura-
tion is assumed for the rod axis at the outset. A local orthonormal system {e, €5, e} } with corre-
sponding coordinates {1, z2, z3} is defined in this configuration, with vectors e’, (o« = 1, 2) placed
on the rod’s cross-section and e} placed along the rod axis as shown in Fig. 1. Points in this configu-
ration are described by the vector field

E=C+a. )
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The rod axis is described by ¢ = x3e3, where 23 € L = [0,1] is the axis coordinate, with [ being the
rod’s reference length, and the cross-section is described relative to the rod axis by a” = z,e,.

deformed
configuration

cross-section
“before” warping

reference
configuration

Figure 1: Rod desctiption and kinematics.
Source: created by the authors.

In the deformed configuration, another orthonormal system {e;, e, e5} is defined, as depicted in
Fig. 1. The deformation of the rod is then described by a vector field x such that the position of the
material points is expressed by

T =z+a+ppes, (2)

where z = 2(z3) describes the position of points at the deformed axis, a = a@(z,, x3) defines the
position of points at the deformed cross-section in the projection of its plane, 1) = zﬁ(xa) is a function
defining the warping of the cross-section with respect to its shear center (the so-called warping
function) and p = p(z3) is a scalar parameter that gives ¢ its amplitude. Many possibilities exist
for the choice of ¢, as for example the classical Saint-Venant warping function, the Vlasov sectorial
area (Vlasov, 1961), or any other function that adequately describes the out-of-plane deformation
of the cross-section. In the present work, we adopt a ¢ that is approximated using the finite element
method on a bidimensional mesh of the cross-section.

InEq.(2),and from Fig. 1, one finds that z = ¢+u, where w is the displacement vector of points of the
rod axis. Vector a, in turn, is obtained by a = Qa" = z,e, in which Q is the rotation tensor of the
cross-section. Accordingly, no cross-sectional in-plane distortion is allowed, but first order shear
deformations are accounted for since a is not necessarily normal to the deformed axis. Relation
e; = Qe (i = 1,2, 3) holds for the local systems.

The rotation tensor @ may be written in terms of the Euler rotation vector 8 = fe by means of the

* Contribuicao tecnocientifica ao Construmetal 2016 - Congresso Latino-americano da
Construcao Metdlica - 20 a 22 de setembro de 2016, Sdo Paulo, SP, Brasil.

3



CONGRESSO LATINOAMERICANO
DA CONSTRUCAO METALICA

| ABCEM CONSTRU

3 ]
Associagio Brasileira da \ ! ) I—
Construgio Metlica , / L / "

well-known Euler-Rodrigues formula

sin 0 1 (sin(6/2))? 5
o @t wae 9

Q=1I+ (3)

inwhich § = ||0|| is the rotation angle of the cross-section and ® = Skew () is the skew-symmetric

tensor whose axial vector is 6.

Components of u and 8 on a global Cartesian system along with the scalar parameter p constitute
the seven degrees-of-freedom of this rod model. They are grouped into a vector d as follows:

u
a- M @
p

The deformation gradient F is obtained from differentiation of Eq. (2) with respect to £. Using the
notation (e)’ = 9(e)/dx3 and (e) , = O(e)/0x, for derivatives, it is written as

F = QI+ apes @ el +~; @ ef), (5)
where

v5 =n"+ K" x (a” +Ppe;) + vp'e;, (6)
in which

n"=QTz —e; and k" =T"0. (7)

With these we can also define the back-rotated deformation gradient
F'=Q"F =1+ ,pe;®el, +; ® e, (8)

Vector +% in Eq. (6) can be regarded as the cross-sectional generalized strain vector, with " and "
of Eq. (7) being the rod’s strains (they encompass the axis elongation and the cross-sectional shear
and specific rotations). Tensor I' in Eq. (7), relates the angular velocities vector w to the temporal
derivatives of the rotation parameters 6 and reads as

(sin(6/2))? 04 1— (sin6)/0 o2

1
r=rI+-
T 0/2) B

(9)

Linearization of Eq. (5) with respect to d yields the virtual deformation gradient. Using the symbol
“0” to denote linearized or virtual quantities, the result is as follows:

6F = 6QF + Q(¢) o 0pes @ e, + 575 ® e}), (10)

where 6Q = §QQ7 is a skew-symmetric tensor whose axial vector is denoted by éw. One can show
that dw = axial(§QQT) = I'36, with I' given by Eq. (9). The virtual strain vector 6~ of Eq. (10) is
obtained from linearization of Eq. (6) and reads as

b5 = 60" + 6K x (a” + tpel) + Yop'el + vipr' x ek, (11)
in which
on" = QT(5u' +Z'I'50) and k" = QT(FQSG + I'60") (12)
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are obtained from the linearization of Eq. (7). In the above expressions, Z’ is the skew-symmetric
tensor whose axial vector is 2/, i.e. Z' = Skew(7'). Let now the first Piola-Kirchhoff stress tensor be
expressed in terms of its column-vectors as

P=1,®e€;]. (13)

Vectors 7; are the nominal stresses acting on a point of the rod according to planes whose normals
in the reference configuration are e]. One may also write P = Q P", with

P =1/®e] (14)
as the back-rotated counterpart of P. In this case, vectors 7" are the back-rotated stress vectors.

The internal virtual work of the rod, with the aid of Egs. (10) and (13), is given by

(SWmt—// :0F) dAdL (15)

where A is the area of the cross-sections at the reference configuration. Performing integration
over the area, we define the following cross-sectional stresses:

n" = / T3 dA =V,el + Nej
A
m” —/( + ¢pes) x T35 dA = Myel, + Tej
Q= [ (2 e+ 75 - (7 x €)) d
B= / (13 - €5)yY dA.
A
Components of the first two vectors above are the resultant shear forces (V,), normal force (V),

bending moments (1/,) and torsional moment (T) of the cross-sections, whereas @ and B are the
so-called bi-shear and bi-moment due to the consideration of warping.

Groupingthemin ageneralized stress vector " and matching them with their corresponding virtual
strains in vector de” we obtain

T T
a'rz[nr m’ Q B} and 5€T=[(57]T OK” Op 6p’} (17)
which are 8 x 1 vectors that can be used to rewrite Eq. (15) as
Wiy = / (0" - 6¢") dL. (18)
L
Vector de” of Eq. (17), in view of Eq. (12), may be written as de” = W Add, where
T
QT QTzZr O o o 18%3 O O o o
T ! T
p- |9 QT QTF‘l’g and A=| O I IZ o ol . (19
o o o
oT o o 0 1 ol o o 1 I&%

The external virtual work of the rod is given by
§Wext_/(/t5wdc+/b5wd14) dL (20)
L \Jc A
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inwhich ¢ is the external surface traction acting on the rod’s surface per unit reference area, C'is the
contour of the cross-sections, and b is the vector of external body forces per unit reference volume.
With §x above given from linearization of Eq. (2), evaluation of the contour and area integrals in
Eq. (20) renders the external force resultants. They are grouped into vector g as shown below:

ﬁ:/idCJr/EdA
C A

,  where m:/(a—i—wpeg) xde—i—/(a—&—wpeg) xbdA (21)
c A

;S

|
e

3

EZ/ Yt - e3 dC+/ ’(/)563 dA.
c A
allowing us to rewrite Eq. (20) as
Wt = / (g-dd) dL. (22)
L
Components of m and m are respectively the resultant external forces and moments, whereas B
is the resultant external bi-moment, all per unit reference length of the rod axis.
The equilibrium of the rod is enforced by means of the virtual work theorem in a standard way:
OW =Wipnt — Were =0 in L, Véd|dd(0) = dd(l) = o, (23)

with §W;,,; and 6, given by Egs. (15) and (20) or by Egs. (18) and (22). The Fréchet derivative of
the above weak form with respect to d leads to the tangent formulation of this model:

o(0W) = / ((DPAN) - (FPAI) + (GASA) - (Add) — (Ldd - 0d)) dL, (24)
L
in which
oo” owTor oq
D = D G = 9(Ad) and L_%. (25)

They represent the constitutive effects, the geometric effects of the internal forces and the geo-
metric effects of the external loading on the tangent operator. Operators G and L are

O Gugy O o0 o
GZ’G G99 G@g/ o O Ly, Ly Lup
G=|0 Gf O o o and L= |Lyp, Lpo Lgp (26)
o’ o’ ol 0 0 L, Ly L,
ol o o 0 0

They are given in detail in Pimenta and Yojo (1993) and Campello (2000). Observe that if D is sym-
metric and the external loading is conservative, the tangent operator will also be symmetric. Ex-
pressions for D will be developed in the following chapter.

3. ELASTOPLASTIC CONSTITUTIVE EQUATION
3.1. Model for small strains and large displacements and rotations

For the elastic regimen of deformation, we assume that the behavior of the material is governed by
the classic Kirchhoff-Saint Venant model, which states that

S=\I:E+2uE (27)
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inwhich A and i are the Lamé parameters, F is the Green-Lagrange strain tensor and S is the second
Piola-Kirchhoff stress tensor. For homogeneous isotropic materials, the Lamé parameters can be
written in terms of the elastic modulus E and shear modulus G as (Gaussmann, 1951):

G(E - 2G)
3G—E

In this case, it can be shown that, up to the first order, Q' P = P" ~ S (Campello, 2000, p. 49) and
Eq. (15) of the internal virtual work can be rewritten as

uw=G_G and A= (28)

Wit = /L /A (S:6E)dAdL (29)

This relation allows us a simple expression for the back-rotated stress vector ;. We start with the
Green-Lagrange strain tensor E, energetically conjugated to S, that is

1 ) 1 0 pyYa 1 0 5
E=S(FTF -D=g||0 1 pa| | 0 1 |1 (30)

Y31 Va2 33 b1 P2 Vi3

where 7%, and v, are the components of v4. Keeping only the first order terms in these component
products yields

1 0 0 Y51 +pYa
E = 3 0 0 Voo F 2] - (31)

Y31+ i tpYe 2733

Replacing Eq. (31) and Eq. (28) in Eq. (27), we obtain the classic linear elastic relations for all stresses
in P" =~ S which, in components, reads as

AVi3 0 (31 + o)
S = 0 AYV33 (V32 + p.2)

p(yg + oY) p(vge oY) (A +2m)y3s

Converting the material parameters we get

(G:(),g:QEG)) V33 0 G(v31 +p¥a)
S = 0 (%) V33 G (732 + 1Y 2)
GOy +pv1) Gy + i) (2G + %) Vs

Observing the components of E in Eq. (31) that are zero, the components of S that will contribute
to the internal virtual work are:

G (4G - E)
3G-FE
where 73; and 7, are the components of 7 and correspond to the cross-sectional normal and shear
stresses respectively. Observe that for materials with £ ~ 2G we have 7j; = E~%, and that a rela-

tion of £ = 3G implies that Poisson’s ratio v = 0.5 and the material would be perfectly incompress-
ible.

T

T = Tag = G(V30 T PV.0) and T33 = V33 (32)
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With these relations in Eq. (16) we can obtain the tangent matrix D = do /e of constitutive effects.

When in plastic deformation regimen, we assume that the material behavior of the rod is described
by the classical elastoplastic constitutive model for small strains. Accordingly, using superscripts
le and |p for elastic and plastic parts respectively, the cross-sectional strain vector 44 of Eq. (6) is
decomposed additively as

rle

SR (33)

Furthermore, the plastic strain 7;” is assumed to occur due only to the cross-sectional normal
stress 735 from Eq. (14). This allows us to work under a simple uniaxial framework for the plastic
deformations. With these deformation components and considering the linear elastic relation of
the Kirchhoff-St. Venant material, we formulate the elastic stress-strain relationship governing 73,

and v4 k¥ as
Tga = T;S = G(’Vgoz + pw,a) (34)
. GMAG—-E) .. GHUG-E), . r
T33 = 3G _FE 73:‘3 = ﬁ(%g - ’Y3L|°,p)~ (35)

Considering isotropic hardening of the material that follows Ludwik’s hardening law, the admissible
stresses for this component lie within the following conditions:

F(rig, ) = |133] — (0y + Ka™) <0 and « >0 (36)

where F is the yield criterion, oy is the initial yield stress, « is the internal hardening variable, K
is the strength coefficient and m is the strain hardening exponent. We adopt an associative plastic
flow rule and a simple evolutionary equation for the hardening variable as equivalent plastic strain
given by

OF
OTis

"y%p =an and &= |"y§:|,)p| where 7 =

(37)

The Kuhn-Tucker loading/unloading conditions and the consistency condition are then expressed as
F <o, a >0, aF=0 and a&F=0 (38)

With these conditions it is possible to characterize the material behavior in the elastic and plastic
states when subject to loading or unloading:

, loading : F<0, F>0, &=0
elastic : , . i
unloading : F <0, F <0, a=0

. loading : F=0, F=0, a>0
plastic : > , .
unloading : F =0, F <0, a=0

To implement this constitutive model within the kinematics described in the previous section, we
recover the internal virtual work from Egs. (11), (12) and (15) and write it in terms of 7] and §-3:

SWine = / / (P:6F)dAdL
LJA
— [ [ rabvts w60 68 (a7 e + udi e + v x ) dAL
LJA

= / / Tha 0ee + T4 - 05 dAdL (39)
LJa
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3.2. Stress integration algorithm

To implement the stress integration algorithm, specifically the well-known return mapping algo-
rithm for the uni-dimensional case (Simo and Hughes, 1998), we replace the stress, strain and hard-
ening rates by finite increments. It allows us to perform the analysis using an incremental loading
scheme.

At the start of the analysis, variables for the hardening and plastic strains are initialized and have
their history stored to be used in later steps. We compute the elastic trial stress 73,1} as part of
the same finite element models of Campello and Lago (2014) and described in section 2 and Eq. (39).
From this stress component we compute F and verify the compliance with the yield criterion. Here,
the hardening variable from the previous step must be provided:

r tria G4G-F r T
T33fz+11 = ﬁ(%:ﬁ n+l — ’73:‘31’ n) (40)

fzrfll 53:3?11 (oy + Kall') (41)

n

effectively the trials computed. The hardening variables do not change in this case. However, if the
yield criterion is not fulfilled, the trial stress is projected to the yield surface and the plastic strain
and hardening variables are incremented:

If ,/'-’t?rall < 0, the model is either in elastic state or in neutral loading, and the stress and strain are

ftrlal )
Aa = ntl if Firials 0, else Aa=0, (42)
GE))AEG_—EE) +Km CY:anr—f +1
Qi1 = ap + A (43)
r|p _rilp AA ith ~ 7-§n31t'7,r-l‘rall (44)
V33 nt1 = Y33 n + 1A« with 7= 7 trial
T33n+1
r G(4G — E) r T
T33n+1 = ﬂ(%ﬁ nt+l = ’73:|spn+1)- (45)

To solve the nonlinear Eq. (42) when F'"al > 0, we use a local iterative Newton procedure. Since
there is no kinematic hardening, the target function simplifies to the yield criterion 7 which is con-
vex, so the convergence of the Newton procedure is guaranteed. Iterating in k steps, it is as follows:

initialize Aag=0, ag=a, (46)
it Final(ag) <0, Aa= A (47)
f’trlal( )
else Aap i = il (48)
GészEE) + Kma™™ 1
Qpt1 =y + Aaggr (49)

k+ k+1.

3.3. Integration over the cross-section

To compute the stress resultants of Eq. (16), the integration over the cross-section is needed and
it cannot be performed analitically because of the progressive plastification of the cross-section.
For this implementation, the procedures described above are broken down into a series of steps
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to account for this integration and also to provide an adequate model for partial plastification of
the cross-sections of the rod. As seen in Eq. (6), the dependence of 4% on coordinates over the
cross-section is gathered in the vector a” = z,e,. For this elastoplastic constitutive model, we
use an integration scheme similar to that in Campello and Lago (2014). The integration over the
cross-section is approximated numerically using a 2-dimensional mesh. For every cell of this cross-
sectional mesh we compute the quantities that depend on a” using the coodinates of the midpoint
and weight this contribution with the area s of the cell.

/ () dA~ (o)s (50)
A A

The stress integration algorithm above is then applied to components 735 and ~j, of the stress and

strain vectors and to the internal hardening a and plastic strain ygz';’ for each of these cells. After
that, the tangent matrix and residuum vector can be assembled as in the elastic model.

The warping function used in this implementation is obtained exactly by employing the finite ele-
ment method using the cross-sectional mesh to solve the following variational problem

0 1
/Vv-Vw dA—/V'U-gdA:O where g = a’, (51)
A A -1 0

visatestfunction and v is the warping function. We assume that v remains unchanged in the plastic
deformation regimen.

4. NUMERICAL EXAMPLES

The formulation presented in the previous Section was implemented in the finite element mod-
els of the works of Pimenta and Yojo (1993), Campello (2000), Campello and Pimenta (2001) and
Campello and Lago (2014). Both 2-node and 3-node rod elements (linear and quadratic interpola-
tion functions for all degrees-of-freedom of Eq. (4)) were considered. To resolve the constitutive
equation, computation of the stress resultants of Eq. (16) was performed via integration over the
cross-section as mentioned. Reduced Gaussian quadrature was used for integration over the rod’s
length. A Newton incremental/iterative solution scheme is adopted.

We performed several numerical tests in order to validate the implementation. We analyzed exam-
ples involving compression, bending, torsion and warping. The results obtained were excellent and
compared very well with reference solutions whenever these were available (both in nodal solution
and in stress resultants). For the sake of simplicity, we show here the results of only a few of these
tests.

For all examples, a triangle mesh is used for the cross-section. The results over the cross-section
correspond, on the axis, to the nearest quadrature point in cases of results on the middle or the
end of the rod. To improve the approximation of these results, the axis mesh is refined around the
critical cross-section. These results are for the formulation without warping of the cross-section.
Results with warping cross-sections and reference solutions are being prepared and will be ready in
the near future.
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